MPS1-dependent mitotic BLM phosphorylation is important for chromosome stability.

نویسندگان

  • Mei Leng
  • Doug W Chan
  • Hao Luo
  • Cihui Zhu
  • Jun Qin
  • Yi Wang
چکیده

Spindle assembly checkpoint (SAC) ensures bipolar attachment of chromosomes to the mitotic spindle and is essential for faithful chromosome segregation, thereby preventing chromosome instability (CIN). Genetic evidence suggests a causal link between compromised SAC, CIN, and cancer. Bloom syndrome (BS) is a genetic disorder that predisposes affected individuals to cancer. BS cells exhibit elevated rates of sister chromatid exchange, chromosome breaks, and CIN. The BS gene product, BLM, is a member of the RecQ helicases that are required for maintenance of genome stability. The BLM helicase interacts with proteins involved in DNA replication, recombination, and repair and is required for the repair of stalled-replication forks and in the DNA damage response. Here we present biochemical evidence to suggest a role of BLM phosphorylation during mitosis in maintaining chromosome stability. BLM is associated with the SAC kinase MPS1 and is phosphorylated at S144 in a MPS1-dependent manner. Phosphorylated BLM interacts with polo-like kinase 1, a mitotic kinase that binds to phosphoserine/threonine through its polo-box domain (PBD). Furthermore, BS cells expressing BLM-S144A show normal levels of sister chromatid exchange but fail to maintain the mitotic arrest when SAC is activated and exhibit a broad distribution of chromosome numbers. We propose that MPS1-dependent BLM phosphorylation is important for ensuring accurate chromosome segregation, and its deregulation may contribute to cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CDK-Dependent Potentiation of MPS1 Kinase Activity Is Essential to the Mitotic Checkpoint

Accurate chromosome segregation relies upon a mitotic checkpoint that monitors kinetochore attachment toward opposite spindle poles before enabling chromosome disjunction [1]. The MPS1/TTK protein kinase is a core component of the mitotic checkpoint that lies upstream of MAD2 and BubR1 both at the kinetochore and in the cytoplasm [2, 3]. To gain insight into the mechanisms underlying the regula...

متن کامل

Rad52 phosphorylation by Ipl1 and Mps1 contributes to Mps1 kinetochore localization and spindle assembly checkpoint regulation.

Rad52 is well known as a key factor in homologous recombination. Here, we report that Rad52 has functions unrelated to homologous recombination in Saccharomyces cerevisiae; it plays a role in the recruitment of Mps1 to the kinetochores and the maintenance of spindle assembly checkpoint (SAC) activity. Deletion of RAD52 causes various phenotypes related to the dysregulation of chromosome biorien...

متن کامل

A TPR domain–containing N-terminal module of MPS1 is required for its kinetochore localization by Aurora B

The mitotic checkpoint ensures correct chromosome segregation by delaying cell cycle progression until all kinetochores have attached to the mitotic spindle. In this paper, we show that the mitotic checkpoint kinase MPS1 contains an N-terminal localization module, organized in an N-terminal extension (NTE) and a tetratricopeptide repeat (TPR) domain, for which we have determined the crystal str...

متن کامل

Mps1 phosphorylation of condensin II controls chromosome condensation at the onset of mitosis

During mitosis, genomic DNA is condensed into chromosomes to promote its equal segregation into daughter cells. Chromosome condensation occurs during cell cycle progression from G2 phase to mitosis. Failure of chromosome compaction at prophase leads to subsequent misregulation of chromosomes. However, the molecular mechanism that controls the early phase of mitotic chromosome condensation is la...

متن کامل

Dynamic Autophosphorylation of Mps1 Kinase Is Required for Faithful Mitotic Progression

The spindle assembly checkpoint (SAC) is a surveillance mechanism monitoring cell cycle progression, thus ensuring accurate chromosome segregation. The conserved mitotic kinase Mps1 is a key component of the SAC. The human Mps1 exhibits comprehensive phosphorylation during mitosis. However, the related biological relevance is largely unknown. Here, we demonstrate that 8 autophosphorylation site...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 31  شماره 

صفحات  -

تاریخ انتشار 2006